机器学习深度学习——NLP实战(自然语言推断——微调BERT实现)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——针对序列级和词元级应用微调BERT
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

NLP实战(自然语言推断——微调BERT实现)

  • 引入
  • 加载预训练的BERT
  • 微调BERT的数据集
  • 微调BERT
  • 小结

引入

在之前,已经为SNLI数据集上的自然语言推断任务设计了一个基于注意力的结构,文章链接:
机器学习&&深度学习——NLP实战(自然语言推断——注意力机制实现)
现在,我们通过微调BERT来重新审视这项任务。正如上一节讨论的那样,自然语言推断是一个序列级别的文本对分类问题,而微调BERT只需要一个额外的基于多层感知机的架构,如下图所示:
在这里插入图片描述
这边将下载一个已经预训练好的小版本BERT,然后对其进行微调,一遍在SNLI数据集上进行自然语言推断。

import json
import multiprocessing
import os
import torch
from torch import nn
from d2l import torch as d2l

加载预训练的BERT

原始的BERT模型有数以亿计的参数。在下面,我们提供了两个版本的预训练BERT:“bert.base”与原始BERT基础模型一样大,需要大量计算资源才能进行微调,而“bert.small”是一个小版本,以便于演示。

d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.torch.zip',
                             '225d66f04cae318b841a13d32af3acc165f253ac')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.torch.zip',
                              'c72329e68a732bef0452e4b96a1c341c8910f81f')

两个预训练好的BERT模型都包含一个定义词表的“vocab.json”文件和一个预训练参数的“pretrained.params”文件。我们实现了以下load_pretrained_model函数来加载预先训练好的BERT参数。

def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,
                          num_heads, num_layers, dropout, max_len, devices):
    data_dir = d2l.download_extract(pretrained_model)
    # 定义空词表以加载预定义词表
    vocab = d2l.Vocab()
    vocab.idx_to_token = json.load(open(os.path.join(data_dir,
        'vocab.json')))
    vocab.token_to_idx = {token: idx for idx, token in enumerate(
        vocab.idx_to_token)}
    bert = d2l.BERTModel(len(vocab), num_hiddens, norm_shape=[256],
                         ffn_num_input=256, ffn_num_hiddens=ffn_num_hiddens,
                         num_heads=4, num_layers=2, dropout=0.2,
                         max_len=max_len, key_size=256, query_size=256,
                         value_size=256, hid_in_features=256,
                         mlm_in_features=256, nsp_in_features=256)
    # 加载预训练BERT参数
    bert.load_state_dict(torch.load(os.path.join(data_dir,
                                                 'pretrained.params')))
    return bert, vocab

为了便于在大多数机器上演示,我们将在本节中加载和微调经过预训练BERT的小版本(“bert.small”)。在练习中,我们将展示如何微调大得多的“bert.base”以显著提高测试精度。

devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model(
    'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,
    num_layers=2, dropout=0.1, max_len=512, devices=devices)

微调BERT的数据集

对于SNLI数据集的下游任务自然语言推断,我们定义了一个定制的数据集类SNLIBERTDataset。在每个样本中,前提和假设形成一对文本序列,并被打包成一个BERT输入序列。片段索引用于区分BERT输入序列中的前提和假设。利用预定义的BERT输入序列的最大长度(max_len),持续移除输入文本对中较长文本的最后一个标记,直到满足max_len。为了加速生成用于微调BERT的SNLI数据集,我们使用4个工作进程并行生成训练或测试样本。

class SNLIBERTDataset(torch.utils.data.Dataset):
    def __init__(self, dataset, max_len, vocab=None):
        all_premise_hypothesis_tokens = [[
            p_tokens, h_tokens] for p_tokens, h_tokens in zip(
            *[d2l.tokenize([s.lower() for s in sentences])
              for sentences in dataset[:2]])]

        self.labels = torch.tensor(dataset[2])
        self.vocab = vocab
        self.max_len = max_len
        (self.all_token_ids, self.all_segments,
         self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens)
        print('read ' + str(len(self.all_token_ids)) + ' examples')

    def _preprocess(self, all_premise_hypothesis_tokens):
        pool = multiprocessing.Pool(4)  # 使用4个进程
        out = pool.map(self._mp_worker, all_premise_hypothesis_tokens)
        all_token_ids = [
            token_ids for token_ids, segments, valid_len in out]
        all_segments = [segments for token_ids, segments, valid_len in out]
        valid_lens = [valid_len for token_ids, segments, valid_len in out]
        return (torch.tensor(all_token_ids, dtype=torch.long),
                torch.tensor(all_segments, dtype=torch.long),
                torch.tensor(valid_lens))

    def _mp_worker(self, premise_hypothesis_tokens):
        p_tokens, h_tokens = premise_hypothesis_tokens
        self._truncate_pair_of_tokens(p_tokens, h_tokens)
        tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens)
        token_ids = self.vocab[tokens] + [self.vocab['<pad>']] \
                             * (self.max_len - len(tokens))
        segments = segments + [0] * (self.max_len - len(segments))
        valid_len = len(tokens)
        return token_ids, segments, valid_len

    def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
        # 为BERT输入中的'<CLS>'、'<SEP>'和'<SEP>'词元保留位置
        while len(p_tokens) + len(h_tokens) > self.max_len - 3:
            if len(p_tokens) > len(h_tokens):
                p_tokens.pop()
            else:
                h_tokens.pop()

    def __getitem__(self, idx):
        return (self.all_token_ids[idx], self.all_segments[idx],
                self.valid_lens[idx]), self.labels[idx]

    def __len__(self):
        return len(self.all_token_ids)

读取完SNLI数据集后,我们通过实例化SNLIBERTDataset类来生成训练和测试样本。这些样本将在自然语言推断的训练和测试期间进行小批量读取。

# 如果出现显存不足错误,请减少“batch_size”。在原始的BERT模型中,max_len=512
batch_size, max_len, num_workers = 512, 128, d2l.get_dataloader_workers()
data_dir = "D:\Python\pytorch\data\snli_1.0\snli_1.0"
train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab)
test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab)
train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,
                                   num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(test_set, batch_size,
                                  num_workers=num_workers)

微调BERT

用于自然语言推断的微调BERT只需要一个额外的多层感知机,该多层感知机由两个全连接层组成(下面代码的self.hidden和self.output)。这个多层感知机将特殊的“<cls>”词元的BERT表示进行了转换,该词元同时编码前提和假设的信息为自然语言推断的三个输出:蕴涵、矛盾和中性。

class BERTClassifier(nn.Module):
    def __init__(self, bert):
        super(BERTClassifier, self).__init__()
        self.encoder = bert.encoder
        self.hidden = bert.hidden
        self.output = nn.Linear(256, 3)

    def forward(self, inputs):
        tokens_X, segments_X, valid_lens_x = inputs
        encoded_X = self.encoder(tokens_X, segments_X, valid_lens_x)
        return self.output(self.hidden(encoded_X[:, 0, :]))

在下文中,预训练的BERT模型bert被送到用于下游应用的BERTClassifier实例net中。在BERT微调的常见实现中,只有额外的多层感知机(net.output)的输出层的参数将从零开始学习。预训练BERT编码器(net.encoder)和额外的多层感知机的隐藏层(net.hidden)的所有参数都将进行微调。

net = BERTClassifier(bert)

回想一下,在之前的文章:
机器学习&&深度学习——BERT(来自transformer的双向编码器表示)
其中,我们的MaskLM类和NextSentencePred类在其使用的多层感知机中都有一些参数。这些参数是预训练BERT模型bert中参数的一部分,因此是net中参数的一部分。然而,这些参数仅用于计算预训练过程中的遮蔽语言模型损失和下一句预测损失。这两个损失函数与微调下游应用无关,因此当BERT微调时,MaskLM和NextSentencePred中采用的多层感知机的参数不会更新(陈旧的,staled)。
为了允许具有陈旧梯度的参数,标志ignore_stale_grad=True在step函数d2l.train_batch_ch13中被设置。我们通过该函数使用SNLI的训练集(train_iter)和测试集(test_iter)对net模型进行训练和评估。

lr, num_epochs = 1e-4, 5
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction='none')
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
    devices)

运行结果:

loss 0.520, train acc 0.790, test acc 0.779
446.5 examples/sec on [device(type=‘cpu’)]

运行图片:
在这里插入图片描述
如果计算资源允许,比如咱们去autodl平台上租借GPU以后,可以微调一个更大的预训练BERT模型,修改load_pretrained_model函数中的参数设置:将“bert.small”替换为“bert.base”,将num_hiddens=256、ffn_num_hiddens=512、num_heads=4和num_layers=2的值分别增加到768、3072、12和12。这样的测试精度应该是会高于0.86的。

小结

1、我们可以针对下游应用对预训练的BERT模型进行微调,例如在SNLI数据集上进行自然语言推断。
2、在微调过程中,BERT模型成为下游应用模型的一部分。仅与训练前损失相关的参数在微调期间不会更新。


http://www.niftyadmin.cn/n/4966371.html

相关文章

idea启动正常,打成jar包时,启动报错

背景 自己写了个小程序&#xff0c;在idea中启动正常&#xff0c;达成jar包发布时&#xff0c;启动报错。 Caused by: java.sql.SQLException: unknown jdbc driver : at com.alibaba.druid.util.JdbcUtils.getDriverClassName(JdbcUtils.java:517) at com.alibaba.druid.pool…

Docker consul的容器服务注册与发现

前言一、服务注册与发现二、consul 介绍三、consul 部署3.1 consul服务器3.1.1 建立 Consul 服务3.1.2 查看集群信息3.1.3 通过 http api 获取集群信息 3.2 registrator服务器3.2.1 安装 Gliderlabs/Registrator3.2.2 测试服务发现功能是否正常3.2.3 验证 http 和 nginx 服务是…

ubuntu 对多CPU统一设置高性能模式

文章目录 一、问题描述二、软件安装与设置三、查看各CPU状态四、开机默认高性能4.1 安装cpufrequtils4.2 编写脚本4.3 设为默认开机脚本 参考链接 一、问题描述 之前在网上找到的CPU设置高性能模式&#xff0c;只能设置CPU0单个CPU&#xff0c;下述是对多核CPU统一设置工作模式…

【Terraform学习】使用 Terraform 从 EC2 实例访问 S3 存储桶(Terraform-AWS最佳实战学习)

使用 Terraform 从 EC2 实例访问 S3 存储桶 实验步骤 前提条件 安装 Terraform&#xff1a; 地址 下载仓库代码模版 本实验代码位于 task_ec2_s3connet 文件夹中。 变量文件 variables.tf 在上面的代码中&#xff0c;您将声明&#xff0c;aws_access_key&#xff0c;aws_…

c#设计模式-创建型模式 之 原型模式

概述 原型模式是一种创建型设计模式&#xff0c;它允许你复制已有对象&#xff0c;而无需使代码依赖它们所属的类。新的对象可以通过原型模式对已有对象进行复制来获得&#xff0c;而不是每次都重新创建。 原型模式包含如下角色&#xff1a; 抽象原型类&#xff1a;规定了具…

Mybatis-plus查询条件拒绝自动去重

问题描述&#xff1a;当进行多表数据关联时候&#xff0c;使用mybatis结果集封装数据&#xff0c;mybatis会将主键id作为map的key值&#xff0c;如果后面有重复的主键id&#xff0c;那么将会覆盖之前的数据&#xff0c;很显然这不是多表关联查询数据想要看到的结果&#xff0c;…

事务特性 - 达梦数据库

达梦数据库事务特性 1 事务特性1.1 原子性1.2 一致性1.3 隔离性1.4 持久性 1 事务特性 事务必须具备什么属性才是一个有效的事务呢&#xff1f;一个逻辑工作单元必须表现出四种属性&#xff0c;即原子性、一致性、隔离性和持久性&#xff0c;这样才能成为一个有效的事务。DM 数…

MySQL去除数据库重复记录

要从MySQL数据库中删除重复的记录&#xff0c;您可以使用 DELETE 语句结合 GROUP BY 和 HAVING 子句来实现。以下是一个示例&#xff1a; DELETE FROM your_table WHERE id NOT IN (SELECT MIN(id)FROM your_tableGROUP BY column1, column2, ...HAVING COUNT(*) > 1 ); 在…