一个基本的BERT模型框架

news/2024/7/6 5:20:14 标签: bert, 人工智能, 深度学习

构建一个完整的BERT模型并进行训练是一个复杂且耗时的任务。BERT模型由多个组件组成,包括嵌入层、Transformer编码器和分类器等。编写这些组件的完整代码超出了文本的范围。然而,一个基本的BERT模型框架以便了解其结构和主要组件的设置。

import torch
import torch.nn as nn

# BERT Model
class BERTModel(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, num_heads, max_seq_length, num_classes):
        super(BERTModel, self).__init__()
        
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.position_embedding = nn.Embedding(max_seq_length, embedding_dim)
        self.transformer_blocks = nn.ModuleList([
            TransformerBlock(embedding_dim, hidden_dim, num_heads)
            for _ in range(num_layers)
        ])
        self.classifier = nn.Linear(embedding_dim, num_classes)
        self.dropout = nn.Dropout(p=0.1)
        
    def forward(self, input_ids, attention_mask):
        embedded = self.embedding(input_ids)  # [batch_size, seq_length, embedding_dim]
        positions = torch.arange(0, input_ids.size(1), device=input_ids.device).unsqueeze(0).expand_as(input_ids)
        position_embedded = self.position_embedding(positions)  # [batch_size, seq_length, embedding_dim]
        encoded = self.dropout(embedded + position_embedded)  # [batch_size, seq_length, embedding_dim]
        
        for transformer_block in self.transformer_blocks:
            encoded = transformer_block(encoded, attention_mask)
        
        pooled_output = encoded[:, 0, :]  # [batch_size, embedding_dim]
        logits = self.classifier(pooled_output)  # [batch_size, num_classes]
        return logits


# Transformer Block
class TransformerBlock(nn.Module):
    def __init__(self, embedding_dim, hidden_dim, num_heads):
        super(TransformerBlock, self).__init__()
        
        self.attention = MultiHeadAttention(embedding_dim, num_heads)
        self.feed_forward = FeedForward(hidden_dim, embedding_dim)
        self.layer_norm1 = nn.LayerNorm(embedding_dim)
        self.layer_norm2 = nn.LayerNorm(embedding_dim)
        
    def forward(self, x, attention_mask):
        attended = self.attention(x, x, x, attention_mask)  # [batch_size, seq_length, embedding_dim]
        residual1 = x + attended
        normalized1 = self.layer_norm1(residual1)  # [batch_size, seq_length, embedding_dim]
        
        fed_forward = self.feed_forward(normalized1)  # [batch_size, seq_length, embedding_dim]
        residual2 = normalized1 + fed_forward
        normalized2 = self.layer_norm2(residual2)  # [batch_size, seq_length, embedding_dim]
        
        return normalized2


# Multi-Head Attention
class MultiHeadAttention(nn.Module):
    def __init__(self, embedding_dim, num_heads):
        super(MultiHeadAttention, self).__init__()
        
        self.num_heads = num_heads
        self.head_dim = embedding_dim // num_heads
        
        self.q_linear = nn.Linear(embedding_dim, embedding_dim)
        self.k_linear = nn.Linear(embedding_dim, embedding_dim)
        self.v_linear = nn.Linear(embedding_dim, embedding_dim)
        self.out_linear = nn.Linear(embedding_dim, embedding_dim)
        
    def forward(self, query, key, value, mask=None):
        batch_size = query.size(0)
        
        query = self.q_linear(query)  # [batch_size, seq_length, embedding_dim]
        key = self.k_linear(key)  # [batch_size, seq_length, embedding_dim]
        value = self.v_linear(value)  # [batch_size, seq_length, embedding_dim]
        
        query = self._split_heads(query)  # [batch_size, num_heads, seq_length, head_dim]
        key = self._split_heads(key)  # [batch_size, num_heads, seq_length, head_dim]
        value = self._split_heads(value)  # [batch_size, num_heads, seq_length, head_dim]
        
        scores = torch.matmul(query, key.transpose(-1, -2))  # [batch_size, num_heads, seq_length, seq_length]
        scores = scores / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32, device=scores.device))
        if mask is not None:
            scores = scores.masked_fill(mask.unsqueeze(1).unsqueeze(2), -1e9)
        
        attention_outputs = torch.softmax(scores, dim=-1)  # [batch_size, num_heads, seq_length, seq_length]
        attention_outputs = self.dropout(attention_outputs)
        
        attended = torch.matmul(attention_outputs, value)  # [batch_size, num_heads, seq_length, head_dim]
        attended = attended.transpose(1, 2).contiguous()  # [batch_size, seq_length, num_heads, head_dim]
        attended = attended.view(batch_size, -1, self.embedding_dim)  # [batch_size, seq_length, embedding_dim]
        attended = self.out_linear(attended)  # [batch_size, seq_length, embedding_dim]
        
        return attended
        
    def _split_heads(self, x):
        batch_size, seq_length, embedding_dim = x.size()
        x = x.view(batch_size, seq_length, self.num_heads, self.head_dim)
        x = x.transpose(1, 2).contiguous()
        return x


# Feed Forward
class FeedForward(nn.Module):
    def __init__(self, hidden_dim, embedding_dim):
        super(FeedForward, self).__init__()
        
        self.linear1 = nn.Linear(embedding_dim, hidden_dim)
        self.activation = nn.ReLU()
        self.dropout = nn.Dropout(p=0.1)
        self.linear2 = nn.Linear(hidden_dim, embedding_dim)
        
    def forward(self, x):
        x = self.linear1(x)  # [batch_size, seq_length, hidden_dim]
        x = self.activation(x)
        x = self.dropout(x)
        x = self.linear2(x)  # [batch_size, seq_length, embedding_dim]
        return x


# Example usage
vocab_size = 10000
embedding_dim = 300
hidden_dim = 768
num_layers = 12
num_heads = 12
max_seq_length = 512
num_classes = 2

model = BERTModel(vocab_size, embedding_dim, hidden_dim, num_layers, num_heads, max_seq_length, num_classes)
input_ids = torch.tensor([[1, 2, 3, 4, 5]]).long()
attention_mask = torch.tensor([[1, 1, 1, 1, 1]]).long()
logits = model(input_ids, attention_mask)
print(logits.shape)  # [1, num_classes]

这段代码给出了一个基本的BERT模型结构,并包含了Transformer块、注意力机制和前馈神经网络等组件。您需要根据自己的需求和数据集来调整参数和模型结构。

请注意,这只是一个简化的版本,真实的BERT模型还包括Masked Language Modeling(MLM)和Next Sentence Prediction(NSP)等预训练任务。此外,还需要进行数据预处理、损失函数的定义和训练循环等。在实际环境中,强烈建议使用已经经过大规模预训练的BERT模型,如Hugging Face的transformers库中的预训练模型,以获得更好的性能效果。


http://www.niftyadmin.cn/n/5032609.html

相关文章

linux-gic中断分析

linux-gic中断分析 这里主要分析 linux kernel 中 GICv3 中断控制器的代码(drivers/irqchip/irq-gic-v3.c)。 一、设备树 先来看下中断控制器的设备树信息&#xff1a; gic: interrupt-controller3400000 {compatible "arm,gic-v3";#interrupt-cells <3>;…

解决因为修改SELINUX配置文件出错导致Faild to load SELinux poilcy无法进入CentOS7系统的问题

一、问题 最近学习Kubernetes&#xff0c;需要设置永久关闭SELINUX,结果修改错了一个SELINUX配置参数&#xff0c;关机重新启动后导致无法进入CentOS7系统&#xff0c;卡在启动进度条界面。 二、解决 多次重启后&#xff0c;在启动日志中发现 Faild to load SELinux poilcy…

在Windows环境下,使用VS2013配置FFmpeg+OpenCV开发环境

在Windows环境下&#xff0c;使用VS2013配置FFmpegOpenCV开发环境的步骤如下&#xff1a; 1. 下载FFmpeg和OpenCV库&#xff0c;可以到官网或者其他网站下载最新稳定版的库。 2. 安装FFmpeg库&#xff0c;将FFmpeg安装目录添加到系统环境变量中。例如&#xff0c;将FFmpeg安装…

DC系列靶机5通关教程

信息收集 主机扫描 sudo arp-scan -l端口扫描 nmap -p- -A 192.168.16.172漏洞发现 浏览器访问靶机IP 在Contact找到类似提交数据的地方 点击submit&#xff0c;数字发生变化。不断刷新的话&#xff0c;数字依然会发生变化 使用bp抓包发送重发器查看数据包 再次点击发送查看…

线性dp,274. 移动服务,《算法竞赛进阶指南》

274. 移动服务 - AcWing题库 一个公司有三个移动服务员&#xff0c;最初分别在位置 1&#xff0c;2&#xff0c;3 处。 如果某个位置&#xff08;用一个整数表示&#xff09;有一个请求&#xff0c;那么公司必须指派某名员工赶到那个地方去。 某一时刻只有一个员工能移动&am…

Docker 网络学习

docker的网络模式 当你开始大规模使用Docker时&#xff0c;你会发现需要了解很多关于网络的知识。Docker作为目前最火的轻量级容器技术&#xff0c;有很多令人称道的功能&#xff0c;如Docker的镜像管理。然而&#xff0c;Docker同样有着很多不完善的地方&#xff0c;网络方面…

HarmonyOS开发环境搭建

一 鸿蒙简介&#xff1a; 1.1 HarmonyOS是华为自研的一款分布式操作系统&#xff0c;兼容Android&#xff0c;但又区别Android&#xff0c;不仅仅定位与手机系统。更侧重于万物物联和智能终端&#xff0c;目前已更新到4.0版本。 1.2 HarmonyOS软件编程语言是ArkTS&#xff0c…

Prometheus黑盒测试模块,监控TCP端口+ HTTP/HTTPS路由状态

文章目录 一、黑盒测试使用场景二、安装blackbox-exporter三、监控TCP端口四、监控HTTP/HTTPS路由五、最后分享几款Grafana模板 一、黑盒测试使用场景 官方下载地址 blackbox-exporter是Prometheus官方提供的一个黑盒测试的解决方案&#xff0c;可用于以下使用场景&#xff1a…